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Problem 1

Let x and y be positive real numbers. If x 6= y, then x + y > 4xy
x+y .

Proof We will assume that x and y are positive real numbers. We will proceed with a proof by
contraposition. Therefore we will also assume that x + y ≤ 4xy

x+y and will show that x = y.

Because both x and y are positive numbers, their sum will also be a positive number. Therefore
we can safely multiply both sides of our inequality by x + y to obtain

x + y ≤ 4xy

x + y

(x + y)(x + y) ≤ 4xy

x + y
(x + y)

(x + y)(x + y) ≤ 4xy.

Next we can expand the right side of our equation to get

x2 + 2xy + y2 ≤ 4xy.

Now we can gather all of our terms on the right side by subtracting 4xy from both sides

x2 + 2xy + y2 − 4xy ≤ 4xy − 4xy

x2 − 2xy + y2 ≤ 0

which leaves us with 0 on the left side. Note that we can factor the right side to get

(x− y)2 ≤ 0.

We can solve for x + y by taking the square root of both sides. Because squaring a quantity can
turn negative values into positive ones, we must be careful with our inequality. Thus we are left
with the following equations

x− y ≤ 0 and x− y ≥ 0.

To find the relationship between x and y we can add y to both sides of the equations to get

x− y + y ≤ 0 + y and x− y + y ≥ 0 + y

x ≤ y and x ≥ y.

The only way for x ≤ y and x ≥ y to be true is for x = y, as desired.

Thus we have proven that for all real numbers x and y, when x + y ≤ 4xy
x+y , then x = y; or

equivalently when x 6= y, then x + y > 4xy
x+y . �
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Figure 1: 4ABC is a right, isosceles triangle

Problem 2

For all right triangles with a hypotenuse of length a cm and legs of length b cm and c
cm, the triangle is isosceles if and only if its area is 1

4a2 cm2.

Proof . We will assume 4ABC is a right triangle with a hypotenuse of length a cm and legs of
length b cm and c cm. We will show that 4ABC is isosceles if and only if its area is 1

4a2 cm2. To
do this we will show two things. First, if 4ABC is isosceles, then its area is 1

4a2 cm2. Secondly, if
4ABC has an area of 1

4a2 cm2, then 4ABC is isosceles.

We will start with proving that if 4ABC is isosceles, then its area is 1
4a2 cm2. To do this we will

additionally assume that 4ABC is isosceles and will show its area to be 1
4a2 cm2. We can see a

general picture of what 4ABC might look like in Figure 1.

Note that because 4ABC is a right triangle, can can flip it onto itself to make a rectangle. (See
the dashed lines in Figure 1.) The area of this quadrilateral can be found by multiplying b by c.
The area of 4ABC would be have of that, or simply 1

2bc.

The definition of isosceles tells us that the legs of our triangle will both have the same length,
therefore b = c. We can use this fact to make a substitution in our area formula to obtain

area of 4ABC =
1
2
bc

=
1
2
b(b)

=
1
2
b2.

Because 4ABC is a right triangle, we can use the Pythagorean theorem which states a2 = b2 + c2.
Again, we know that b = c so we can make another substitution to get

a2 = b2 + c2

a2 = b2 + b2

a2 = 2b2.
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Figure 2: 4ABC is a right triangle

Then we can divide by 2 to solve for b2 which yields

1
2
a2 = b2.

We can plug this value of b2 into our area formula to get

area of 4ABC =
1
2
b2

=
1
2
(
1
2
a2)

=
1
4
a2

as desired.

Finally, we must show that if 4ABC has an area of 1
4a2 cm2, then 4ABC is isosceles. Like before,

we can rotate the triangle onto itself to make a rectangle (see Figure 2). The area of the rectangle
would be half of this rectangle, thus the area of 4ABC is also 1

2bc. Now we know that

1
4
a2 =

1
2
bc.

We are still dealing with a right triangle, so by the Pythagorean Theorem we know that a2 = b2+c2.
Let’s substitute this value for a2 into our area equation to obtain

1
4
a2 =

1
2
bc

1
4
(b2 + c2) =

1
2
bc.

We can simplify this equation by multiplying both sides by 4 and then grouping all terms on the
same side to get

4 · 1
4
(b2 + c2) = 4 · 1

2
bc

b2 + c2 = 2bc

b2 + c2 − 2bc = 2bc− 2bc

b2 − 2bc + c2 = 0.
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Note that we can now factor the left side to obtain

(b− c)2 = 0.

To solve for b− c we will take the square root of both side which gives us√
(b− c)2 =

√
0

b− c = 0

or equivalently,

b = c.

If b and c are equal to each other, that means the legs of our triangle have the same length. Thus,
by the definition of isosceles, 4ABC is isosceles, as desired.

We have show that, for a right triangle 4ABC, both, if 4ABC is isosceles then its area is 1
4a2

cm2; as well as, if the area of 4ABC is 1
4a2 cm2, then 4ABC is isosceles. Thereby we have proven

that a right triangle 4ABC, with a hypotenuse of length a cm and legs of length b cm and c cm,
is isosceles if and only if its area is 1

4a2 square centimeters. �
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Problem 3

If m is an odd integer, then the equation x2 + x−m = 0 has no integer solution for x.

Proof . We will prove this statement with an indirect proof by contraposition. Therefore we will
assume that x2 + x−m = 0 has an integer solution for x and will show that m is an even integer.

Assuming that x2 + x−m = 0 has an integer solution for x means that

x2 + x−m = 0

for some integer x. Let’s manipulate our equation by adding m to both sides and doing a bit of
factoring to get

x2 + x−m = 0
x2 + x = m

x(x + 1) = m.

Now we have two cases to consider. Because x ∈ Z, x is either even or odd.

Case 1: First let’s consider where x is even. Since 1 is odd, x + 1 would be odd as proven by
Theorem 2 which states that the sum of an even and odd integer is an odd integer. In this case,
the product of x(x + 1) would be even because, as Theorem 4 states, the product of an even and
odd integer is even. Thus m is even as desired.

Case 2: Next we must consider where x is odd. Since 1 is odd, x + 1 would be even as proven
by Theorem 3 which states that the sum of any two odd integers is even. In this case again, the
product of x(x + 1) would be even because, as Theorem 4 states, the product of an even and odd
integer is even. Thus m is even as desired.

In both cases we have shown that m is even. Therefore we have proven that if x2 + x−m = 0 has
an integer solution for x, then m is an even integer; or equivalently, if m is an odd integer, then
x2 + x−m = 0 has no integer solution for x. �
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Problem 4

For all natural numbers n, 5n − 4n ≡ 1 (mod 16).

Proof. We will assume that n is a natural number. We will proceed with a proof by mathematical
induction. We will define our predicate as

P (n) : 5n − 4n ≡ 1 (mod 16).

We will show P (1) is true and that if P (k) is true, then P (k + 1) is true for all natural numbers k.

First let’s start by showing P (1) is true. To do this, we must show that 51 − 4(1) ≡ 1 (mod 16).
Let’s start by evaluating the left side of that equation:

51 − 4(1) = 5− 4
= 1.

We already have 1 in the right side. We know that congruence modulo 16 is an equivalence
relationship and thus it is reflexive; therefore 1 ≡ 1 (mod 16) is true. Consequently, P (1) is true,
as desired.

Next we must show that if P (k) is true, then P (k + 1) is also true. Therefore we will assume that
P (k) is true and will show that P (k + 1) is true for any arbitrary k ∈ N. We start by choosing a
k ∈ N. To show that P (k + 1) is true, we will show that 5k+1 − 4(k + 1) ≡ 1 (mod 16). We can
write P (k) as

5k − 4k ≡ 1 (mod 16).

By the definition of congruence modulo 16, this means that

16 | 5k − 4k − 1.

The definition of divides allows us to rewrite this statement as

16m = 5n − 4n− 1

for some integer m. Let’s start working toward P (k + 1) by multiplying both sides by 5. When we
do this we get

5 · 16m = 5(5k − 4k − 1)
80m = 5 · 5k − 5 · 4k − 5 · 1
80m = 5k+1 − 20k − 5.

Now let’s manipulate the right side a bit to obtain

80m = 5k+1 − 4k − 4− 1− 16k.

Further manipulation gives us

80m = 5k+1 − 4(k + 1)− 1− 16k

80m + 16k = 5k+1 − 4(k + 1)− 1
16(5m + k) = 5k+1 − 4(k + 1)− 1.
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Note that m is an integer, so 5m is an integer as well because 5 is an integer and the integers are
closed under multiplication. We also know that k is an integer, and, because the integers are closed
under addition, 5m + k is an integer. The definition of divides allows us to rewrite the following
statement as

16 | 5k+1 − 4(k + 1)− 1

which, by the definition of congruence modulo 16, also means

5k+1 − 4(k + 1) ≡ 1 (mod 16).

This means that P (k + 1) is true, as desired.

Thus, by the First Principle of Mathematical Induction, we have proven that 5n−4n ≡ 1 (mod 16)
for all natural numbers n. �
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Problem 5

For all nonempty sets A, B, and C from some universal set U , (A × B) ∪ (C × B) =
(A ∪ C)×B.

Proof. We will assume that A,B, C ⊆ U . We will show that (A×B)∪ (C ×B) = (A∪C)×B for
all nonempty sets A, B, C. To do this we will show that (A × B) ∪ (C × B) ⊆ (A ∪ C) × B and
(A ∪ C)×B ⊆ (A×B) ∪ (C ×B).

We will start by showing (A × B) ∪ (C × B) ⊆ (A ∪ C) × B. Let’s let choose an arbitrary
(x1, y1) ∈ (A×B) ∪ (C ×B). This means that (x1, y1) ∈ (A×B) or (x1, y1) ∈ (C ×B).

Case 1: First let’s consider (x1, y1) ∈ (A×B). This means that x1 ∈ A and y1 ∈ B. Since x1 ∈ A,
then x1 ∈ A ∪ C. Now that we know x1 ∈ A ∪ C and y1 ∈ B, we can say (x1, y1) ∈ (A ∪ C)×B.

Case 2: In the other case, we must consider where (x1, y1) ∈ (C × B). This means that x1 ∈ C
and y1 ∈ B. Since x1 ∈ C, then x1 ∈ A ∪ C. Thus we can say (x1, y2) ∈ (A ∪ C) × B because
x1 ∈ A ∪ C and y1 ∈ B.

In both cases we have shown that any element in (A×B)∪ (C×B) is also in (A∪C)×B, therefore
(A×B) ∪ (C ×B) ⊆ (A ∪ C)×B as desired.

Now for the second part. We must show (A∪C)×B ⊆ (A×B)∪(C×B). Let’s choose an arbitrary
element (x2, y2) ∈ (A ∪C)×B. This means there exists some x2 ∈ A ∪C and some y2 ∈ C. Since
x2 ∈ A ∪ C, this means that x2 ∈ A or x2 ∈ C.

Case 1: In the case where x2 ∈ A, we can say that (x2, y2) ∈ A × B because we already know
y2 ∈ B. Since (x2, y2) ∈ A×B, we know that (x2, u2) ∈ (A×B) ∪ (C ×B).

Case 2: Similarly, in the case where x2 ∈ C, we can say that (x2, y2) ∈ C × B because y2 ∈ B.
Since (x2, y2) ∈ C ×B, we can be sure (x2, y2) ∈ (A×B) ∪ (C ×B).

In both cases we have shown that (A∪C)×B ⊆ (A×B)∪ (C ×B) by showing that any arbitrary
element in (A ∪ C)×B is also in (A×B) ∪ (C ×B) as desired.

Since we have shown that both (A×B)∪(C×B) ⊆ (A∪C)×B and (A∪C)×B ⊆ (A×B)∪(C×B),
we can conclude that (A × B) ∪ (C × B) = (A ∪ C) × B for all nonempty sets A, B, and C from
some universal set U . �
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Problem 6

Let A, B, and C be nonempty sets and let f : A → B and g : B → C be functions. If
g ◦ f is a surjection, then g is a surjection.

Proof. Let’s assume A, B, and C are nonempty sets. We will also assume that g ◦ f is a surjection
and will show that g is a surjection.

To prove that g is a surjection, we must show every element in its codomain has a corresponding
pre-image in the domain. We will begin by choosing an arbitrary y ∈ C (the codomain of g).

Now that we know there exists some element y ∈ C and we assumed that g ◦ f is a surjection, this
means that there exists an element x ∈ A such that g ◦ f(x) = y.

We will now construct a b ∈ B (the domain of g) such that g(b) = y. Consider b = f(x). Note that
the function f maps elements from A to B. We know that x ∈ A, therefore the result of f(x) will
be an element in B. This b ∈ B. Now let’s plug this value into the function g to get

g(b) = g(f(x))
= g ◦ f(x).

Recall that g ◦ f(x) = y. We can now substitute this into our equation to get

g(b) = y.

This means that any arbitrary element in the codomain of g has a pre-image in the domain, therefore
g is a surjection, as desired.

Thus we have shown that for nonempty sets A, B, and C and functions f : A → B and g : B → C;
if g ◦ f is a surjection, then g is a surjection. �

Let A, B, and C be nonempty sets and let f : A → B and g : B → C be functions. If
g is a surjection, then g ◦ f is a surjection.

Statement. We can provide a counter example to verify this statement is false. This means that
we can provide a specific example where g is a surjection but g ◦ f is not a surjection. Consider
the piecewise functions represented in Figure 3. That is, let A = {a}, B = {1, 2} and C = {X, Y }.
Functions f and g are defined such that f(a) = 1, g(1) = X, and g(2) = Y .

Note that g is a surjection because every element in it’s codomain, C, has a corresponding element
in the domain, B. Specifically, we can say g(1) = X and g(2) = Y ; thus our hypothesis is true.

However, note that g◦f is not a surjection. We say this because there is an element in the codomain
of g ◦ f , C, that has no corresponding pre-image in the domain, A. As you can tell from Figure 3,
Y ∈ C but no element from A will yield Y as an output.
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Figure 3: f : A → B and g : B → C where g is surjective

Since we have shown a specific case where the hypothesis is true, but the conclusion is false; the
statement must be false.

Let A, B, and C be nonempty sets and let f : A → B and g : B → C be functions. If
g ◦ f is a surjection, then f is a surjection.

Statement. We can provide a counterexample to verify this statement is false. That is, we can
provide a specific example where g ◦ f is a surjection but f is not a surjection. Consider the
piecewise functions represented in Figure 4. That is, let A = {a}, B = {1, 2} and C = {X}.
Functions f and g are defined such that f(a) = 1, g(1) = X, and g(2) = X.

Note that g ◦ f is a surjection because even element in its codomain, C, has a corresponding pre-
image in the domain, A. This is easy to show because there is only one element in C, X, and it’s
pre-image is a which is in A.

A B C

a

1

2
X

f g

Figure 4: f : A → B and g : B → C where g ◦ f(x) is surjective

However, note that f is a not surjection because we can find a specific element that is in the
codomain that does not have a pre-image in the domain. In this case, 2 ∈ B but there is no
element in A that would produce a 2 when plugged into f .
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Since we have shown a specific case where the hypothesis is true, but the conclusion is false; the
statement must be false.
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Problem 7

Let (fn) be the Fibonacci sequence. For all fm, where m is a natural number such that
m 6≡ 0 (mod 3), fm is odd.

Proof. We will assume that (fn) is the Fibonacci sequence. The first two terms of the Fibonacci
sequence, f1 and f2, are defined as 1. Any subsequent term in the sequence can be found by adding
the two previous terms, or, symbolically, fn = fn−1 + fn−2 for all integers n greater than or equal
to 3. We will assume that fm is a number in the Fibonacci sequence where m is a natural number
such that m 6≡ 0 (mod 3). This means that either m ≡ 1 (mod 3) or m ≡ 2 (mod 3). We will
show that fm is odd. We will prove each of these cases through mathematical induction.

Case 1: First we will examine fm where m ≡ 1 (mod 3). Using the definition of congruence and
divides, we know

m ≡ 1 (mod 3)
3 | m− 1
3j = m− 1

for some integer j. Solving for m gives us

3j + 1 = m.

This means we are looking looking at numbers in the sequence in the form of f3j+1. By definition,
3j + 1 must be a natural number which means that we must consider all cases where j ≥ 0. To
proceed with our proof by induction, we will define our predicate P (k) to be

f3k+1 is odd.

for all integers k ≥ 0. We will show that P (0) is true and will show that if P (k) is true, then
P (k + 1) is true.

First, we must show P (0) is true. Note that if we plug 0 in for k into 3k + 1, we get 1. Therefore
we are looking at the term f1 in the sequence. By the definition of the Fibonacci sequence, the
term f1 is 1, and 1 is odd. Thereby P (0) is true, as desired.

Next, we will assume that P (k) is true and will show that P (k + 1) is true. We start by choosing
an arbitrary k ∈ Z where k ≥ 0. Assuming that P (k) is true means that f3k+1 is odd. Thus, this
can be written as

f3k+1 = 2g + 1

for some integer g. Now let’s look at P (k + 1), which deals with f3(k+1)+1, or simply f3k+4. The
definition of the Fibonacci sequence tells us that

f3k+4 = f3k+3 + f3k+2.

for all terms where 3k + 4 ≥ 3. In the same way, we can rewrite f3k+3 to obtain

f3k+4 = (f3k+2 + f3k+1) + f3k+2

= 2 · f3k+2 + f3k+1
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We can substitute the value for f3k+1 we found using our inductive hypothesis into this equation,
and do some rearranging to get

f3k+4 = 2 · f3k+2 + (2g + 1)
= 2 · f3k+2 + 2g + 1
= 2(f3k+2 + g) + 1.

Note that f3k+2 is an integer because all numbers in the Fibonacci sequence are integers. We
already know g in an integer; therefore f3k+2 + g is an integer. This means that f3k+4 is odd by
the definition of odd, as desired.

Thus, by the Extended First Principle of Mathematical Induction, we have prove that for all fm

where m is a natural number such that m ≡ 1 (mod 3), fm is odd.

Case 2: Next we will examine fm where m ≡ 2 (mod 3). Using the definition of congruence and
divides, we know

m ≡ 2 (mod 3)
3 | m− 2
3q = m− 2

for some integer q. Solving for m gives us

3q + 2 = m.

This means we are looking looking at numbers in the sequence in the form of f3q+2. By definition,
3q + 2 must be a natural number which means that we must consider all cases where q ≥ 0. To
proceed with our proof by induction, we will define our predicate P (k) to be

f3k+2 is odd.

for all integers k ≥ 0. We will show that P (0) is true and will show that if P (k) is true, then
P (k + 1) is true.

First, we must show P (0) is true. Note that if we plug 0 in for k into 3k + 2, we get 2. Therefore
we are looking at the term f2 in the sequence. The term f2 is defined by the Fibonacci sequence
to be 1. We know that 1 is odd, therefore P (0) is true, as desired.

Next, we will assume that P (k) is true and will show that P (k + 1) is true. We start by choosing
an arbitrary k ∈ Z where k ≥ 0. Assuming that P (k) is true means that f3k+2 is odd. Thus, this
can be written as

f3k+2 = 2p + 1

for some integer p. Now let’s look at P (k + 1), which deals with f3(k+1)+2, or simply f3k+5. The
definition of the Fibonacci sequence tells us that

f3k+5 = f3k+4 + f3k+3.
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for all terms where 3k + 5 ≥ 3. In the same way, we can rewrite the terms for f3k+3 to obtain

f3k+5 = (f3k+3 + f3k+2) + f3k+3

= 2 · f3k+3 + f3k+2.

We can substitute the value for f3k+2 we found using our inductive hypothesis into this equation,
and do some rearranging to get

f3k+5 = 2 · f3k+3 + (2p + 1)
= 2 · f3k+3 + 2p + 1
= 2(f3k+3 + p) + 1.

Note that f3k+3 is an integer because all numbers in the Fibonacci sequence are integers. We
already know p in an integer therefore f3k+3 + p is an integer. This means that f3k+5 is odd by the
definition of odd, as desired.

Thus, the the Extended First Principle of Mathematical Induction, have prove that for all fm where
m is a natural number such that m ≡ 2 (mod 3), fm is odd.

We have proven that for all terms fm in the Fibonacci sequence where m is a natural number such
that m ≡ 1 (mod 3) or m ≡ 2 (mod 3), or equivalently, m 6≡ 0 (mod 3), fm is odd. �

14


