Prove $\lim _{x \rightarrow a} x^{2}=a^{2}$.
Proof. We will show that for all $\epsilon>0$, there exists some positive real δ such that if $|x-a|<\delta$, then $\left|x^{2}-a^{2}\right|<\epsilon$. Let us consider the case where $|x-a|<1$. This implies that

$$
\begin{gathered}
-1<x-a<1 \\
a-1<x<a+1 \\
2 a-1<x+a<2 a+1
\end{gathered}
$$

Let $M=\max \{|2 a+1|,|2 a-1|\}$. This means that $|x+a|<M$ when $|x-a|<1$.
Let $\delta=\min \left\{\frac{\epsilon}{M}, 1\right\}$. We will now show that if $|x-a|<\delta$, then $\left|x^{2}-a^{2}\right|<\epsilon$. Since $|x-a|<\delta$, that means that either $|x-a|<1$ or $|x-a|<\frac{\epsilon}{M}$. Let's consider the first case. If $\delta=1$, then $\frac{\epsilon}{M}$ must be greater than 1 . Thus

$$
|x-a|<1<\frac{\epsilon}{M} .
$$

In the case where $\delta=\frac{\epsilon}{M}$. That means that 1 is larger than $\frac{\epsilon}{M}$; therefore

$$
|x-a|<\frac{\epsilon}{M}<1 .
$$

In both cases $|x-a|$ is less than 1 and less than $\frac{\epsilon}{M}$. Thus we can simply assume that $|x-a|<\frac{\epsilon}{M}$. Since $|x-a|<1$, we know that $|x+a|<M$. This means that

$$
\begin{gathered}
|x-a||x+a|<\frac{\epsilon}{M} \cdot M \\
|(x-a)(x+a)|<\epsilon \\
\left|x^{2}-a^{2}\right|<\epsilon .
\end{gathered}
$$

Thus we have shown that $\lim _{x \rightarrow a} x^{2}=a^{2}$.

