Prove $\lim_{x \to a} x^2 = a^2$.

Proof. We will show that for all $\epsilon > 0$, there exists some positive real δ such that if $|x - a| < \delta$, then $|x^2 - a^2| < \epsilon$. Let us consider the case where |x - a| < 1. This implies that

$$-1 < x - a < 1$$

 $a - 1 < x < a + 1$
 $2a - 1 < x + a < 2a + 1$

Let $M = \max\{|2a+1|, |2a-1|\}$. This means that |x+a| < M when |x-a| < 1.

Let $\delta = \min\left\{\frac{\epsilon}{M}, 1\right\}$. We will now show that if $|x - a| < \delta$, then $|x^2 - a^2| < \epsilon$. Since $|x - a| < \delta$, that means that either |x - a| < 1 or $|x - a| < \frac{\epsilon}{M}$. Let's consider the first case. If $\delta = 1$, then $\frac{\epsilon}{M}$ must be greater than 1. Thus

$$|x-a| < 1 < \frac{\epsilon}{M}.$$

In the case where $\delta = \frac{\epsilon}{M}$. That means that 1 is larger than $\frac{\epsilon}{M}$; therefore

$$|x-a| < \frac{\epsilon}{M} < 1.$$

In both cases |x - a| is less than 1 and less than $\frac{\epsilon}{M}$. Thus we can simply assume that $|x - a| < \frac{\epsilon}{M}$. Since |x - a| < 1, we know that |x + a| < M. This means that

$$\begin{aligned} |x-a||x+a| &< \frac{\epsilon}{M} \cdot M \\ |(x-a)(x+a)| &< \epsilon \\ |x^2 - a^2| &< \epsilon. \end{aligned}$$

Thus we have shown that $\lim_{x \to a} x^2 = a^2$.